Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Document Type
Year range
1.
Transboundary and Emerging Diseases ; 2023, 2023.
Article in English | ProQuest Central | ID: covidwho-2325841

ABSTRACT

Bovine kobuvirus (BKV) is an infectious agent associated with neonatal calf diarrhoea (NCD), causing important economic losses to dairy and beef cattle herds worldwide. Here, we present the detection rate and characterize the genome of BKV isolated from diarrhoeic calves from a Central Italy herd. From January to December 2021, we collected blood samples and nasal and rectal swabs from 66 calves with severe NCD between 3 and 20 days of age. After virological (bovine coronavirus, bovine viral diarrhoea virus, and bovine rotavirus), bacteriological (Escherichia coli spp. and Salmonella spp.), and parasitological (Cryptosporidium spp., Eimeria spp., and Giardia duodenalis) investigations, we detected BKV using the metagenomic analysis. This result was confirmed using a specific polymerase chain reaction assay that revealed the number of BKV-positive nasal (24.2%) and rectal swabs (31.8%). The prevalence of BKV was higher than that of BCoV. Coinfection with BKV and BCoV was detected in 7.5% of the rectal swabs, highlighting the involvement of another infectious agent in NCD. Using next generation sequencing (NGS) approach, it was possible to obtain the complete sequence of the BKV genome from other two rectal swabs previously analysed by real-time PCR. This is the first report describing the whole genome sequence (WGS) of BKV from Italy. The Italian BKV genomes showed the highest nucleotide sequence identity with BKV KY407744.1, identified in Egypt in 2014. The sequence encoding VP1 best matched that of BKV KY024562, identified in Scotland in 2013. Considering the small number of BKV WGSs available in public databases, further studies are urgently required to assess the whole genome constellation of circulating BKV strains. Furthermore, pathogenicity studies should be conducted by inoculating calves with either only BKV or a combination with other enteric pathogens for understanding the probable role of BKV in NCD.

2.
Transboundary and Emerging Diseases ; 2023, 2023.
Article in German | ProQuest Central | ID: covidwho-2305942

ABSTRACT

Feline infectious peritonitis (FIP), which is caused by feline infectious peritonitis virus (FIPV), is a fatal and immunologically mediated infectious disease among cats. At present, due to the atypical clinical symptoms and clinicopathological changes, the clinical diagnosis of FIP is still difficult. The gold standard method for the differential diagnosis of FIP is immunohistochemistry (IHC) which is time-consuming and requires specialized personnel and equipment. Therefore, a rapid and accurate clinical diagnostic method for FIPV infection is still urgently needed. In this study, based on the etiological investigation of FIPV in parts of southern China, we attempted to explore a new rapid and highly sensitive method for clinical diagnosis. The results of the etiological investigation showed that the N gene of the FIPV BS8 strain had the highest homology with other strains. Based on this, a specific FIPV BS8 N protein monoclonal antibody was successfully prepared by expression of the recombinant proteins, immunization of mice, fusion and selection of hybridoma cell lines, and screening and purification of monoclonal antibodies. Furthermore, we carried out a time-saving combination method including indirect immunofluorescence assay (IFA) and nested reverse transcription polymerase chain reaction (RT-nPCR) to examine FIP-suspected clinical samples. These results were 100% consistent with IHC. The results revealed that the combined method could be a rapid and accurate application in the diagnosis of suspected FIPV infection within 24 hours. In conclusion, the combination of IFA and RT-nPCR was shown to be a fast and reliable method for clinical FIPV diagnosis. This study will provide insight into the exploitation of FIPV N antibodies for the clinical diagnosis of FIP-suspected ascites samples.

3.
Journal of Clinical Laboratory Analysis ; 36(5), 2022.
Article in English | ProQuest Central | ID: covidwho-1842938

ABSTRACT

BackgroundThe COVID‐19 pandemic caused by SARS‐CoV‐2 remains public health burdens and many unresolved issues worldwide. Molecular assays based on real‐time RT‐PCR are critical for the detection of SARS‐CoV‐2 in clinical specimens from patients suspected of COVID‐19.ObjectiveWe aimed to establish and validate an in‐house real‐time RT‐PCR for the detection of SARS‐CoV‐2.MethodologyPrimers and probes sets in our in‐house real‐time RT‐PCR assay were designed in conserved regions of the N and E target genes. Optimized multiplex real‐time RT‐PCR assay was validated using the first WHO International Standard (NIBSC code: 20/146) and evaluated clinical performance.ResultsThe limit of detection validated using the first WHO International Standard was 159 IU/ml for both E and N target genes. The evaluation of clinical performance on 170 clinical samples showed a positive percent agreement of 100% and the negative percent agreement of 99.08% for both target genes. The Kappa value of 0.99 was an excellent agreement, the strong correlation of Ct values observed between two tests with r2 = 0.84 for the E gene and 0.87 for the N gene. Notably, we assessed on 60 paired saliva and nasopharyngeal samples. The overall agreement was 91.66%, and Kappa value of 0.74 showed a high agreement between two types of samples. When using nasopharyngeal swabs as the reference standard, positive percent agreement, and negative percent agreement were 91.83% and 90.90%, respectively.ConclusionIn the present study, we established and validated an in‐house real‐time RT‐PCR for molecular detection of SARS‐CoV‐2 in a resource‐limited country.

4.
Materials (Basel) ; 14(19)2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1463744

ABSTRACT

The failure mechanisms of Cu-Cu bumps under thermal cycling test (TCT) were investigated. The resistance change of Cu-Cu bumps in chip corners was less than 20% after 1000 thermal cycles. Many cracks were found at the center of the bonding interface, assumed to be a result of weak grain boundaries. Finite element analysis (FEA) was performed to simulate the stress distribution under thermal cycling. The results show that the maximum stress was located close to the Cu redistribution lines (RDLs). With the TiW adhesion layer between the Cu-Cu bumps and RDLs, the bonding strength was strong enough to sustain the thermal stress. Additionally, the middle of the Cu-Cu bumps was subjected to tension. Some triple junctions with zig-zag grain boundaries after TCT were observed. From the pre-existing tiny voids at the bonding interface, cracks might initiate and propagate along the weak bonding interface. In order to avoid such failures, a postannealing bonding process was adopted to completely eliminate the bonding interface of Cu-Cu bumps. This study delivers a deep understanding of the thermal cycling reliability of Cu-Cu hybrid joints.

5.
Trends Analyt Chem ; 143: 116377, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1284582

ABSTRACT

PCR has been widely used in different fields including molecular biology, pathogen detection, medical diagnosis, food detection and etc. However, the difficulty of promoting PCR in on-site point-of-care testing reflects on challenges relative to its speed, convenience, complexity, and even cost. With the emerging state-of-art of microfluidics, rapid PCR can be achieved with more flexible ways in micro-reactors. PCR plays a critical role in the detection of SARS-CoV-2. Under this special background of COVID-19 pandemic, this review focuses on the latest rapid microfluidic PCR. Rapid PCR is concluded in two main features, including the reactor (type, size, material) and the implementation of thermal cycling. Especially, the compromise between speed and sensitivity with microfluidic PCR is explored based on the system ratio of (thermal cycling time)/(reactor size). Representative applications about the detection of pathogens and SARS-CoV-2 viruses based on rapid PCR or other isothermal amplification are discussed as well.

SELECTION OF CITATIONS
SEARCH DETAIL